Fitting Linear and Generalized Linear Model in "Divide and Recombine" approach to Large Data Sets
drglm.Rd
Function drglm
aimed to fit GLMs to datasets larger in size that can be stored in memory. It uses popular divide and recombine technique to handle large data sets efficiently.Function drglm
optimizes performance when linked with optimized BLAS libraries like ATLAS.The function drglm
requires defining the number of chunks K and the fitfunction.The rest of the arguments are almost identical with the speedglm or biglm package.
Arguments
- formula
An entity belonging to the "formula" class (or one that can be transformed into that class) represents a symbolic representation of the model that needs to be adjusted. Specifics about how the model is defined can be found in the 'Details' section.
- family
An explanation of the error distribution that will be implemented in the model.
- data
A data frame, list, or environment that is not required but can be provided if available.
- k
Number of subsets to be used.
- fitfunction
The function to be utilized for model fitting.
glm
orspeedglm
should be used.For Multinomial models,multinom
function is preferred.
Value
A Generalized Linear Model is fitted in "Divide & Recombine" approach using "k" chunks to data set. A list of model coefficients is estimated using divide and recombine method with the respective standard error of estimates.
References
Xi, R., Lin, N., & Chen, Y. (2009). Compression and aggregation for logistic regression analysis in data cubes. IEEE Transactions on Knowledge and Data Engineering, 21(4).
Chen, Y., Dong, G., Han, J., Pei, J., Wah, B. W., & Wang, J. (2006). Regression cubes with lossless compression and aggregation. IEEE Transactions on Knowledge and Data Engineering, 18(12).
Zuo, W., & Li, Y. (2018). A New Stochastic Restricted Liu Estimator for the Logistic Regression Model. Open Journal of Statistics, 08(01).
Karim, M. R., & Islam, M. A. (2019). Reliability and Survival Analysis. In Reliability and Survival Analysis.
Enea, M. (2009) Fitting Linear Models and Generalized Linear Models with large data sets in R.
Bates, D. (2009) Technical Report on Least Square Calculations.
Lumley, T. (2009) biglm package documentation.
Examples
set.seed(123)
#Number of rows to be generated
n <- 10000
#creating dataset
dataset <- data.frame( pred_1 = round(rnorm(n, mean = 50, sd = 10)),
pred_2 = round(rnorm(n, mean = 7.5, sd = 2.1)),
pred_3 = as.factor(sample(c("0", "1"), n, replace = TRUE)),
pred_4 = as.factor(sample(c("0", "1", "2"), n, replace = TRUE)),
pred_5 = as.factor(sample(0:15, n, replace = TRUE)),
pred_6 = round(rnorm(n, mean = 60, sd = 5)))
#fitting MLRM
nmodel= drglm::drglm(pred_1 ~ pred_2+ pred_3+ pred_4+ pred_5+ pred_6,
data=dataset, family="gaussian", fitfunction="speedglm", k=10)
#Output
nmodel
#> Estimate standard error t value Pr(>|t|) 95% CI
#> (Intercept) 51.72130615 1.32114969 39.1487102 0.00000000 [ 49.13 , 54.31 ]
#> pred_2 0.02094802 0.04748735 0.4411285 0.65911997 [ -0.07 , 0.11 ]
#> pred_31 -0.13949603 0.20171843 -0.6915384 0.48922728 [ -0.53 , 0.26 ]
#> pred_41 0.38350656 0.24833980 1.5442815 0.12252015 [ -0.1 , 0.87 ]
#> pred_42 0.23785108 0.24752089 0.9609334 0.33658568 [ -0.25 , 0.72 ]
#> pred_51 -1.06696639 0.56657382 -1.8831904 0.05967457 [ -2.18 , 0.04 ]
#> pred_52 -0.80267657 0.56004238 -1.4332426 0.15178853 [ -1.9 , 0.29 ]
#> pred_53 -0.64240893 0.56243644 -1.1421894 0.25337531 [ -1.74 , 0.46 ]
#> pred_54 -0.87049071 0.56948141 -1.5285674 0.12637173 [ -1.99 , 0.25 ]
#> pred_55 -0.51662926 0.56337343 -0.9170281 0.35912793 [ -1.62 , 0.59 ]
#> pred_56 -0.51405571 0.56179393 -0.9150254 0.36017830 [ -1.62 , 0.59 ]
#> pred_57 -0.68371489 0.56680847 -1.2062538 0.22771963 [ -1.79 , 0.43 ]
#> pred_58 -0.83233284 0.56987357 -1.4605570 0.14413705 [ -1.95 , 0.28 ]
#> pred_59 -0.76583552 0.56309505 -1.3600466 0.17381517 [ -1.87 , 0.34 ]
#> pred_510 -0.69443427 0.56813346 -1.2223083 0.22159105 [ -1.81 , 0.42 ]
#> pred_511 -0.75598173 0.55912331 -1.3520841 0.17634842 [ -1.85 , 0.34 ]
#> pred_512 -1.32332553 0.56884076 -2.3263550 0.01999962 [ -2.44 , -0.21 ]
#> pred_513 -0.76349854 0.56265917 -1.3569468 0.17479812 [ -1.87 , 0.34 ]
#> pred_514 -0.60991931 0.57137187 -1.0674647 0.28576204 [ -1.73 , 0.51 ]
#> pred_515 0.14287426 0.57115597 0.2501493 0.80247190 [ -0.98 , 1.26 ]
#> pred_6 -0.02291395 0.02004498 -1.1431264 0.25298613 [ -0.06 , 0.02 ]
#fitting simple logistic regression model
bmodel=drglm::drglm(pred_3~ pred_1+ pred_2+ pred_4+ pred_5+ pred_6,
data=dataset, family="binomial", fitfunction="speedglm", k=10)
#Output
bmodel
#> Estimate Odds Ratio standard error z value Pr(>|z|)
#> (Intercept) 0.0952195429 1.0999003 0.286765015 0.33204728 0.73985356
#> pred_1 -0.0013836918 0.9986173 0.002045315 -0.67651761 0.49871207
#> pred_2 -0.0004142688 0.9995858 0.009605457 -0.04312848 0.96559912
#> pred_41 0.0184132664 1.0185838 0.050213834 0.36669708 0.71384499
#> pred_42 0.0863909757 1.0902325 0.050044304 1.72628990 0.08429527
#> pred_51 -0.1066254801 0.8988623 0.114997732 -0.92719637 0.35382459
#> pred_52 -0.0591881914 0.9425294 0.113290817 -0.52244474 0.60136071
#> pred_53 -0.0807833291 0.9223935 0.113929295 -0.70906547 0.47828385
#> pred_54 0.0229787647 1.0232448 0.115269581 0.19934804 0.84199051
#> pred_55 -0.0057667632 0.9942498 0.113913596 -0.05062401 0.95962513
#> pred_56 0.0254936407 1.0258214 0.113816898 0.22398819 0.82276649
#> pred_57 0.0233435801 1.0236182 0.114746435 0.20343621 0.83879410
#> pred_58 -0.0092262931 0.9908161 0.115149070 -0.08012477 0.93613802
#> pred_59 -0.1390418914 0.8701916 0.114051937 -1.21911030 0.22280233
#> pred_510 0.0532619633 1.0547059 0.114808460 0.46392020 0.64270492
#> pred_511 -0.0815427288 0.9216933 0.113599237 -0.71781053 0.47287412
#> pred_512 0.0934829685 1.0979919 0.114770538 0.81452061 0.41534677
#> pred_513 0.0508340238 1.0521482 0.114111051 0.44547853 0.65597397
#> pred_514 -0.0722004220 0.9303444 0.115422244 -0.62553300 0.53162130
#> pred_515 0.1086928534 1.1148199 0.115575343 0.94045019 0.34698669
#> pred_6 -0.0008249102 0.9991754 0.004057493 -0.20330540 0.83889633
#> 95% CI
#> (Intercept) [ -0.47 , 0.66 ]
#> pred_1 [ -0.01 , 0 ]
#> pred_2 [ -0.02 , 0.02 ]
#> pred_41 [ -0.08 , 0.12 ]
#> pred_42 [ -0.01 , 0.18 ]
#> pred_51 [ -0.33 , 0.12 ]
#> pred_52 [ -0.28 , 0.16 ]
#> pred_53 [ -0.3 , 0.14 ]
#> pred_54 [ -0.2 , 0.25 ]
#> pred_55 [ -0.23 , 0.22 ]
#> pred_56 [ -0.2 , 0.25 ]
#> pred_57 [ -0.2 , 0.25 ]
#> pred_58 [ -0.23 , 0.22 ]
#> pred_59 [ -0.36 , 0.08 ]
#> pred_510 [ -0.17 , 0.28 ]
#> pred_511 [ -0.3 , 0.14 ]
#> pred_512 [ -0.13 , 0.32 ]
#> pred_513 [ -0.17 , 0.27 ]
#> pred_514 [ -0.3 , 0.15 ]
#> pred_515 [ -0.12 , 0.34 ]
#> pred_6 [ -0.01 , 0.01 ]
#fitting poisson regression model
pmodel=drglm::drglm(pred_5~ pred_1+ pred_2+ pred_3+ pred_4+ pred_6,
data=dataset, family="binomial", fitfunction="speedglm", k=10)
#Output
pmodel
#> Estimate Odds Ratio standard error z value Pr(>|z|)
#> (Intercept) 2.405511769 11.0841013 0.559554526 4.29897652 1.715886e-05
#> pred_1 -0.007027986 0.9929967 0.004122233 -1.70489760 8.821352e-02
#> pred_2 0.028680323 1.0290956 0.019505478 1.47037271 1.414608e-01
#> pred_31 -0.009920401 0.9901286 0.082764726 -0.11986267 9.045919e-01
#> pred_41 0.078623643 1.0817971 0.102399679 0.76781142 4.425992e-01
#> pred_42 0.010046680 1.0100973 0.100601142 0.09986646 9.204503e-01
#> pred_6 0.005829844 1.0058469 0.008198830 0.71105795 4.770483e-01
#> 95% CI
#> (Intercept) [ 1.31 , 3.5 ]
#> pred_1 [ -0.02 , 0 ]
#> pred_2 [ -0.01 , 0.07 ]
#> pred_31 [ -0.17 , 0.15 ]
#> pred_41 [ -0.12 , 0.28 ]
#> pred_42 [ -0.19 , 0.21 ]
#> pred_6 [ -0.01 , 0.02 ]
#fitting multinomial logistic regression model
mmodel=drglm::drglm(pred_4~ pred_1+ pred_2+ pred_3+ pred_5+ pred_6,
data=dataset, family="multinomial", fitfunction="multinom", k=10)
#> # weights: 63 (40 variable)
#> initial value 1098.612289
#> iter 10 value 1081.842250
#> iter 20 value 1079.724677
#> iter 30 value 1079.709082
#> final value 1079.708962
#> converged
#> # weights: 63 (40 variable)
#> initial value 1098.612289
#> iter 10 value 1084.321143
#> iter 20 value 1075.145510
#> iter 30 value 1075.060898
#> final value 1075.059122
#> converged
#> # weights: 63 (40 variable)
#> initial value 1098.612289
#> iter 10 value 1086.065933
#> iter 20 value 1080.654708
#> iter 30 value 1080.617651
#> final value 1080.617432
#> converged
#> # weights: 63 (40 variable)
#> initial value 1098.612289
#> iter 10 value 1085.721140
#> iter 20 value 1082.392343
#> iter 30 value 1082.378604
#> final value 1082.378515
#> converged
#> # weights: 63 (40 variable)
#> initial value 1098.612289
#> iter 10 value 1083.460043
#> iter 20 value 1076.975921
#> iter 30 value 1076.930816
#> final value 1076.930268
#> converged
#> # weights: 63 (40 variable)
#> initial value 1098.612289
#> iter 10 value 1086.343504
#> iter 20 value 1083.483907
#> iter 30 value 1083.429147
#> final value 1083.428788
#> converged
#> # weights: 63 (40 variable)
#> initial value 1098.612289
#> iter 10 value 1086.383304
#> iter 20 value 1079.248191
#> iter 30 value 1079.131777
#> final value 1079.129705
#> converged
#> # weights: 63 (40 variable)
#> initial value 1098.612289
#> iter 10 value 1087.658835
#> iter 20 value 1079.056688
#> iter 30 value 1078.843593
#> final value 1078.841904
#> converged
#> # weights: 63 (40 variable)
#> initial value 1098.612289
#> iter 10 value 1080.330228
#> iter 20 value 1073.171327
#> iter 30 value 1072.982368
#> final value 1072.981502
#> converged
#> # weights: 63 (40 variable)
#> initial value 1098.612289
#> iter 10 value 1082.581872
#> iter 20 value 1079.435676
#> iter 30 value 1079.288356
#> final value 1079.287908
#> converged
#Output
mmodel
#> Estimate.1 Estimate.2 Odds Ratio.1 Odds Ratio.2
#> (Intercept) -0.2853539188 -0.533750309 0.7517481 0.5864017
#> pred_1 0.0038416692 0.002793053 1.0038491 1.0027970
#> pred_2 0.0082891106 -0.009496117 1.0083236 0.9905488
#> pred_31 0.0218560016 0.098556010 1.0220966 1.1035762
#> pred_51 0.1041197912 0.107943130 1.1097334 1.1139844
#> pred_52 0.0185882466 0.034426012 1.0187621 1.0350254
#> pred_53 0.2397209895 0.080935362 1.2708945 1.0843008
#> pred_54 0.0938156731 -0.031423995 1.0983573 0.9690646
#> pred_55 0.1328703482 0.033111908 1.1421019 1.0336662
#> pred_56 0.2595421380 0.084977571 1.2963364 1.0886926
#> pred_57 -0.0258373204 0.006160637 0.9744936 1.0061797
#> pred_58 0.1254919206 0.064560739 1.1337060 1.0666904
#> pred_59 0.1020629948 0.024347754 1.1074532 1.0246466
#> pred_510 0.1031342956 -0.001880707 1.1086403 0.9981211
#> pred_511 0.1036721356 0.098304574 1.1092367 1.1032988
#> pred_512 0.1629845156 -0.009769957 1.1770185 0.9902776
#> pred_513 0.0560079157 0.033235440 1.0576061 1.0337939
#> pred_514 -0.0114576021 0.056310921 0.9886078 1.0579266
#> pred_515 -0.0323858251 -0.020269661 0.9681330 0.9799344
#> pred_6 -0.0004666329 0.007235091 0.9995335 1.0072613
#> standard error.1 standard error.2 z value.1 z value.2
#> (Intercept) 0.352355572 0.351293926 -0.80984648 -1.51938383
#> pred_1 0.002519101 0.002511803 1.52501623 1.11197121
#> pred_2 0.011828815 0.011781775 0.70075579 -0.80600053
#> pred_31 0.050219507 0.050048272 0.43520940 1.96921904
#> pred_51 0.143050124 0.140461598 0.72785530 0.76848855
#> pred_52 0.141289751 0.138335472 0.13156118 0.24885889
#> pred_53 0.141463492 0.141642918 1.69457848 0.57140423
#> pred_54 0.141581660 0.141524963 0.66262589 -0.22203853
#> pred_55 0.141310183 0.140318969 0.94027440 0.23597599
#> pred_56 0.140523643 0.140900389 1.84696420 0.60310388
#> pred_57 0.142934906 0.139626085 -0.18076285 0.04412239
#> pred_58 0.143771676 0.141982106 0.87285566 0.45471039
#> pred_59 0.141325495 0.139770477 0.72218388 0.17419812
#> pred_510 0.142115285 0.142460092 0.72570868 -0.01320164
#> pred_511 0.141672817 0.138927665 0.73177154 0.70759538
#> pred_512 0.141233081 0.142472377 1.15401090 -0.06857440
#> pred_513 0.140878949 0.138964031 0.39756057 0.23916578
#> pred_514 0.144333825 0.140790079 -0.07938265 0.39996370
#> pred_515 0.143521586 0.140359894 -0.22565125 -0.14441206
#> pred_6 0.004998638 0.004979892 -0.09335200 1.45286115
#> Pr(>|z|).1 Pr(>|z|).2 95% lower CI.1 95% lower CI.2 95% upper CI.1
#> (Intercept) 0.41802842 0.12866591 -0.975958149 -1.2222737520 0.405250311
#> pred_1 0.12725505 0.26615053 -0.001095677 -0.0021299910 0.008779015
#> pred_2 0.48345543 0.42024255 -0.014894941 -0.0325879707 0.031473162
#> pred_31 0.66341044 0.04892794 -0.076572423 0.0004631993 0.120284427
#> pred_51 0.46670217 0.44219699 -0.176253300 -0.1673565430 0.384492883
#> pred_52 0.89533139 0.80346994 -0.258334577 -0.2367065310 0.295511070
#> pred_53 0.09015541 0.56772567 -0.037542360 -0.1966796557 0.516984339
#> pred_54 0.50757019 0.82428389 -0.183679281 -0.3088078254 0.371310627
#> pred_55 0.34707683 0.81345130 -0.144092521 -0.2419082168 0.409833218
#> pred_56 0.06475233 0.54643959 -0.015879141 -0.1911821164 0.534963417
#> pred_57 0.85655373 0.96480684 -0.305984588 -0.2675014606 0.254309947
#> pred_58 0.38274176 0.64931761 -0.156295386 -0.2137190764 0.407279227
#> pred_59 0.47018143 0.86170976 -0.174929886 -0.2495973465 0.379055875
#> pred_510 0.46801738 0.98946692 -0.175406544 -0.2810973573 0.381675135
#> pred_511 0.46430802 0.47919656 -0.174001483 -0.1739886449 0.381345755
#> pred_512 0.24849570 0.94532840 -0.113827237 -0.2890106853 0.439796268
#> pred_513 0.69095413 0.81097704 -0.220109750 -0.2391290552 0.332125581
#> pred_514 0.93672827 0.68918326 -0.294346701 -0.2196325644 0.271431497
#> pred_515 0.82147268 0.88517510 -0.313682965 -0.2953699988 0.248911315
#> pred_6 0.92562392 0.14626231 -0.010263784 -0.0025253173 0.009330518
#> 95% upper CI.2
#> (Intercept) 0.154773134
#> pred_1 0.007716097
#> pred_2 0.013595738
#> pred_31 0.196648820
#> pred_51 0.383242804
#> pred_52 0.305558555
#> pred_53 0.358550379
#> pred_54 0.245959836
#> pred_55 0.308132032
#> pred_56 0.361137259
#> pred_57 0.279822734
#> pred_58 0.342840554
#> pred_59 0.298292855
#> pred_510 0.277335943
#> pred_511 0.370597794
#> pred_512 0.269470771
#> pred_513 0.305599936
#> pred_514 0.332254406
#> pred_515 0.254830677
#> pred_6 0.016995500